3. Data Wrangling and Exploration¶
Now that we have our programming environment set up, experience writing Python in Jupyter, using version control with GitHub (Desktop), and some Golden Rules to guide us…
It’s time to science stuff.
We are going to cover
wrangling data (load, clean, alter) with
numpy
andpandas
data visualization with
seaborn
and, when necessary,matplotlib
how to merge data ( safely! )
and introduce you to some seriously high-powered finance datasets. What is data science without BIIIIG DATA?